Exploring the antioxidant and antimicrobial properties of five indigenous Kenyan plants used in traditional medicine
Sofowora, A. Research on medicinal plants and traditional medicine in Africa. J. Altern. Complement. Med. 2, 365–372 (1996).
Google Scholar
Traditional medicine. definitions. Geneva: World Health Organization (WHO). https://www.who.int/health-topics/traditional-complementary-and-integrative-medicine#tab=tab_1.
Kigen, G. K., Ronoh, H. K., Kipkore, W. K. & Rotich, J. K. Current trends oftraditional herbal medicine practice in Kenya: a review. Afr. J. Pharm. 2, 32–37 (2013).
Kiringe, J. W. Ecological and anthropological threats to Ethno-Medicinal Plant Resources and their utilization in Maasai Communal ranches in the Amboseli Region of Kenya. Ethnobot Res. App. 3, 231 (2005).
Google Scholar
Frass, M. et al. Use and acceptance of complementary and alternative medicine among the general population and medical personnel: a systematic review. Ochsner J. 12, 45–56 (2012).
Google Scholar
Traditional Complementary and Integrative Medicine. https://www.who.int/health-topics/traditional-complementary-and-integrative-medicine#tab=tab_2
Mohamed, A. E. et al. Pharmacological activities of Grewia bicolor roots. J. Ethnopharmacol. 28, 285–292 (1990).
Google Scholar
Kingo, R. M. & Maregesi, S. M. Ethnopharmacological study on some medicinal plants used in ujiji, kigoma, tanzania. J. Phytopharmacol. 9, 102–109 (2020).
Google Scholar
Innocent, E., Marealle, A. I., Imming, P. & Moeller, L. An annotated inventory of tanzanian medicinal plants traditionally used for the treatment of respiratory bacterial infections. Plants 11, (2022).
Bussmann, R. W., Paniagua-Zambrana, N. Y. & Njoroge, G. N. Grewia bicolor Juss. GTembensisbensis Fresen. Grewia tenax (Forssk.) Fiori Grewia villosa Willd. Malvaceae. In Ethnobotany of the Mountain Regions of Africa Ethnobotany of Mountain Regions. (ed Bussmann, R. W.) (Cham: Springer International Publishing), 567–575. (2021).
Google Scholar
Palgrave, K. C., Palgrave, M. C. & Duggan, T. Trees of Southern Africa (B H B Distribution), 1983).
Hutchings, A., Scott, A. H., Lewis, G. & Cunningham, A. Zulu Medicinal Plants: An Inventory (University Of Kwazulu-natal), 1996).
Maroyi, A. Review of Ethnomedicinal, Phytochemical and Pharmacological Properties of Lannea schweinfurthii (Engl.) Engl. Molecules. 24, (2019).
Subapriya, R. & Nagini, S. Medicinal properties of neem leaves: a review. Curr. Med. Chem. Anticancer Agents. 5, 149–146 (2005).
Google Scholar
Dastan, D., Pezhmanmehr, M., Askari, N., Ebrahimi, S. N. & Hadian, J. Essential oil compositions of the leaves of Azadirachta indica A. Juss from Iran. J. Essent. Oil Bearing Plants. 13, 357–361 (2010).
Google Scholar
Mahmoud, D. A., Hassanein, N. M., Youssef, K. A. & Abou Zeid, M. A. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens. Braz J. Microbiol. 42, 1007–1016 (2011).
Google Scholar
Eid, A., Jaradat, N. & Elmarzugi, N. A Review of chemical constituents and traditional usage of Neem plant (Azadirachta Indica). Palestinian Medical and Pharmaceutical Journal. 2. (2017).
Ojewumi Modupe, E. et al. Phytochemical and antimicrobial activities of the Leaf Oil Extract of Mentha Spicata and its efficacy in repelling Mosquito. Int. J. Pharm. Res. Allied Sci. 6, 17–27 (2017).
Ojewumi, M. E. et al. Analytical investigation of the extract of lemon grass leaves in repelling mosquito. IJPSR. 8, 1000–1009 (2017).
Google Scholar
Ojewumi, M. E., Adeyemi, A. O. & Ojewumi, E. O. Oil extract from local leaves – an alternative to synthetic mosquito repellant. Pharmacophore 9, 1–6 (2018).
Babatunde, D. E., Otusemade, G. O., Ojewumi, M. E., Agboola, O. & Oyeniyi, E. Antimicrobial activity and phytochemical screening of neem leaves and lemon grass essential oil extracts. IJMET. 10, 882–889. (2019).
Tonto, T. C. et al. Methodological pipeline for monitoring post-harvest quality of leafy vegetables. Sci. Rep. 13, 20568 (2023).
Google Scholar
Cimini, S., Locato, V., Giacinti, V., Molinari, M. & De Gara, L. A Multifactorial Regulation of Glutathione Metabolism behind Salt Tolerance in Rice. Antioxidants (Basel). 11. (2022).
Zhang, J. & Kirkham, M. B. Antioxidant responses to drought in sunflower and sorghum seedlings. New. Phytol. 132, 361–373 (1996).
Google Scholar
Della Posta, S., Gallo, V., Dugo, L., De Gara, L. & Fanali, C. Development and Box-Behnken design optimization of a green extraction method natural deep eutectic solvent-based for phenolic compounds from barley malt rootlets. Electrophoresis. 43, 1832–1840 (2022).
Google Scholar
Padmanabhan, P. & Jangle, S. N. Evaluation of DPPH radical scavenging activity and reducing power of four selected medicinal plants and their combinations. Int. J. Pharm. Sci. Drug Res. 4, 143–146 (2012).
Google Scholar
Fu, L. et al. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules 15, 8602–8617 (2010).
Google Scholar
Kupe, M. et al. Phenolic composition and antioxidant activity of peel, pulp and seed extracts of different clones of the turkish grape cultivar karaerik. Plants. 10. (2021).
Hossain, M. L., Lim, L. Y., Hammer, K., Hettiarachchi, D. & Locher, C. A review of commonly used methodologies for assessing the antibacterial activity of honey and honey products. Antibiotics (Basel). 11. (2022).
Holder, I. A. & Boyce, S. T. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns 20, 426–429 (1994).
Google Scholar
Marquez, M. L. & Sinnecker, P. U., and Chlorophylls: properties, biosynthesis, degradation and functions. In Food Colorants: Chemical and Functional Properties Chemical & Functional Properties of food Components. (ed Socaciu, C.) (CRC), 25–49. (2007).
Viera, I., Pérez-Gálvez, A. & Roca, M. Green Natural Colorants. Molecules. 24. (2019).
Faralli, M. & Lawson, T. Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential? Plant. J. 101, 518–528 (2020).
Google Scholar
Szarka, A., Tomasskovics, B. & Bánhegyi, G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13, 4458–4483 (2012).
Google Scholar
Lou, L. et al. Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L). PLoS ONE 13, e0194625, 1–18 (2018).
Hasanuzzaman, M. et al. Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants (Basel). 8, (2019).
Sun, W. & Shahrajabian, M. H. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules. 28. (2023).
Pasqualetti, V. et al. Comparison between In Vitro Chemical and Ex Vivo Biological Assays to Evaluate Antioxidant Capacity of Botanical Extracts. Antioxidants (Basel). 10, (2021).
Mathew, S., Abraham, T. E. & Zakaria, Z. A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 52, 5790–5798 (2015).
Google Scholar
Álvarez-Martínez, F. J., Barrajón-Catalán, E. & Micol, V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines. 8, (2020).
Ahmed, M. et al. K., and Studying the Antioxidant and the Antimicrobial Activities of Leaf Successive Extracts Compared to the Green-Chemically Synthesized Silver Nanoparticles and the Crude Aqueous Extract from Azadirachta indica. Processes 11, 1644. (2023).
Andersa, K. N. et al. Proximate Composition, some Phytochemical Constituents, Potential uses, and Safety of neem leaf Flour: A Review (Food Sci. Nutr, 2024).
Martins, T., Barros, A. N., Rosa, E. & Antunes, L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules. 28, (2023).
Ebrahimi, P., Shokramraji, Z., Tavakkoli, S., Mihaylova, D. & Lante, A. Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. Plants. 12, (2023).
Ferruzzi, M. G., Failla, M. L. & Schwartz, S. J. Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and Caco-2 human cell model. J. Agric. Food Chem. 49, 2082–2089 (2001).
Google Scholar
Gallardo-Guerrero, L., Gandul-Rojas, B. & Mínguez-Mosquera, M. I. Digestive stability, micellarization, and uptake by Caco-2 human intestinal cell of chlorophyll derivatives from different preparations of pea (Pisum sativum L). J. Agric. Food Chem. 56, 8379–8386 (2008).
Google Scholar
Dashwood, R. Chlorophylls as anticarcinogens (review). Int. J. Oncol. 10, 721–727 (1997).
Google Scholar
Simonich, M. T. et al. Natural chlorophyll inhibits aflatoxin B1-induced multi-organ carcinogenesis in the rat. Carcinogenesis 28, 1294–1302 (2007).
Google Scholar
Carvalho, A. M. S. et al. Phytol, a Chlorophyll Component, produces Antihyperalgesic, anti-inflammatory, and Antiarthritic effects: possible NFκB pathway involvement and reduced levels of the Proinflammatory cytokines TNF-α and IL-6. J. Nat. Prod. 83, 1107–1117 (2020).
Google Scholar
Subramoniam, A. et al. Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same. Inflammation 35, 959–966 (2012).
Google Scholar
Gomes, B. B. et al. Bioavailability of dietary sodium copper chlorophyllin and its effect on antioxidant defence parameters of Wistar rats. J. Sci. Food Agric. 89, 2003–2010 (2009).
Google Scholar
Fasakin, C. F., Udenigwe, C. C. & Aluko, R. E. Antioxidant properties of chlorophyll-enriched and chlorophyll-depleted polyphenolic fractions from leaves of Vernonia amygdalina and Gongronema latifolium. Food Res. Int. 44, 2435–2441 (2011).
Google Scholar
Hannan, M. A., Dash, R., Sohag, A. A. M., Haque, M. N. & Moon, I. S. Neuroprotection against oxidative stress: phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system. Front. Mol. Neurosci. 13, 116 (2020).
Google Scholar
Zhan, R., Wu, J. & Ouyang, J. In vitro antioxidant activities of Sodium Zinc and Sodium Iron Chlorophyllins from Pine needles. Food Technol. Biotechnol. 52, 505–510 (2014).
Google Scholar
Ferruzzi, M. G., Failla, M. L. & Schwartz, S. J. Sodium copper chlorophyllin: in vitro digestive stability and accumulation by Caco-2 human intestinal cells. J. Agric. Food Chem. 50, 2173–2179 (2002).
Google Scholar
Lanfer-Marquez, U. M., Barros, R. M. C. & Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 38, 885–891 (2005).
Google Scholar
Serpeloni, J. M. et al. An evaluation, using the comet assay and the micronucleus test, of the antigenotoxic effects of chlorophyll b in mice. Mutat. Res. 725, 50–56 (2011).
Google Scholar
Olson, J. A. Benefits and liabilities of vitamin A and carotenoids. J. Nutr. 126, 1208S–12S (1996).
Google Scholar
Eggersdorfer, M. & Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 652, 18–26 (2018).
Google Scholar
Gurmu, F., Hussein, S. & Laing, M. The potential of orange-fleshed sweet potato to prevent vitamin A deficiency in Africa. Int. J. Vitam. Nutr. Res. 84, 65–78 (2014).
Google Scholar
Barker, F. M. et al. Nutritional manipulation of primate retinas, V: effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage. Invest. Ophthalmol. Vis. Sci. 52, 3934–3942 (2011).
Google Scholar
Tanaka, T., Shnimizu, M. & Moriwaki, H. Cancer chemoprevention by carotenoids. Molecules 17, 3202–3242 (2012).
Google Scholar
Iwamoto, T. et al. Inhibition of low-density lipoprotein oxidation by astaxanthin. J. Atheroscler Thromb. 7, 216–222 (2000).
Google Scholar
Yoshida, H. et al. Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis 209, 520–523 (2010).
Google Scholar
Alzohairy, M. A. Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evid. Based Complement. Alternat. Med. 2016, 7382506. (2016).
Kizhedath, A. & Suneetha, V. Estimation of chlorophyll content in common household medicinal leaves and their utilization to avail health benefits of chlorophyll. J. Pharm. Res. 4, 1412–1413 (2011).
Google Scholar
Locato, V., Cimini, S. & Gara, L. D. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Front. Plant. Sci. 4, 152 (2013).
Locato, V., de Pinto, M., Paradiso, A. & De Gara, L. Reactive oxygen species and ascorbate-glutathione interplay in signaling and stress responses. In Reactive Oxygen Species and Antioxidants in Higher Plants, (ed Gupta, S.) (Science), 45–64. (2010).
Formentin, E. et al. H2O2 signature and innate antioxidative profile make the difference between sensitivity and tolerance to salt in rice cells. Front. Plant. Sci. 9, 1549 (2018).
Google Scholar
Kumar, S., Singh, B. & Bajpai, V. Traditional uses, phytochemistry, quality control and biological activities of genus Grewia. Phytomedicine Plus. 2, 100290 (2022).
Google Scholar
Masisi, K. et al. Antioxidant, cytotoxicity and cytoprotective potential of extracts of grewia flava and grewia bicolor berries. J. Pharmacopunct. 24, 24–31 (2021).
Google Scholar
Vivek Ramshankar, Y., Vinay, P. & Vijayan, P. Antioxidant, antimicrobial and cytotoxicity properties of the methanolic extract from Grewia Tiliaefolia Vahl. Pharmacogn Mag. 4, 329–334 (2008).
Google Scholar
Nadeem Asghar, M., Ullah Khan, I., Sherin, L. & Ashfaq, M. Evaulation of antioxidant activity of Grewia asiatica Berry using 2,2’-Azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) and N,N-Dimethyl-p-phenylenediamine radical cations decolourization. Asian J. Chem. 20, 5123–5132 (2008).
Chassagne, F. et al. A systematic review of plants with antibacterial activities: a taxonomic and phylogenetic perspective. Front. Pharmacol. 11, 586548 (2020).
Google Scholar
Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).
Google Scholar
Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).
Google Scholar
Tsonis, I. et al. Spontaneous cerebral abscess due to Bacillus subtilis in an immunocompetent male patient: a case report and review of literature. World J. Clin. Cases. 6, 1169–1174 (2018).
Google Scholar
Steenkamp, V., Fernandes, A. C. & van Rensburg, C. E. J. Antibacterial activity of Venda medicinal plants. Fitoterapia 78, 561–564 (2007).
Google Scholar
Idris, M., Nkafamiya, I., Akinterinwa, A. & Japari, J. Preliminary studies on some medicinal plants in girei, adamawa state of Nigeria. Br. J. Pharm. Res. 6, 203–213 (2015).
Google Scholar
Waithaka, P., Gathuru, E., Githaiga, B. M. & Tembo, J. Synergistic antimicrobial effect of Egerton university cow’s urine and neem tree (Azadirachta indica) crude extracts on selected infectious human and plant pathogenic microbes. Int. Academi Eng. Med. Res. 1, 3 (2016).
Odongo, E. A., Mutai, P. C., Amugune, B. K. & Mungai, N. N. A Systematic Review of Medicinal Plants of Kenya used in the Management of Bacterial Infections. Evid. Based Complement. Alternat. Med. 2022, 9089360. (2022).
Wamuyu, K. R., Machocho, A. K. & Wafula, A. W. Antimicrobial and phytochemical screening of Lannea Schweinfurthii. (Engl) Engl. Bioteknologi. 17, 1–13 (2020).
Google Scholar
link