Probiotics reduce negative mood over time: the value of daily self-reports in detecting effects

Cipriani, A. et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391, 1357–1366 (2018).
Google Scholar
Akhtar, H., Bukhari, F., Nazir, M., Anwar, M. N. & Shahzad, A. Therapeutic efficacy of neurostimulation for depression: techniques, current modalities, and future challenges. Neurosci. Bull. 32, 115–126 (2016).
Google Scholar
Hofmann, S. G., Asnaani, A., Vonk, I. J. J., Sawyer, A. T. & Fang, A. The efficacy of CBT: a review of meta-analyses. Cogn. Ther. Res. 36, 427–440 (2012).
Google Scholar
Firth, J. et al. The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry 18, 308–324 (2019).
Google Scholar
Bruce-Keller, A., Salbaum, J. M. & Berthoud, H.-R. Harnessing gut microbes for mental health: getting from here to there. Biol. Psychiatry 83, 214–223 (2018).
Google Scholar
Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
Google Scholar
Sampson, T. R. & Mazmanian, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17, 565–576 (2015).
Google Scholar
Johnson, K. V.-A. & Burnet, P. W. J. Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci 21, 32 (2020).
Google Scholar
Sarkar, A. et al. The role of the microbiome in the neurobiology of social behaviour. Biol. Rev. 95, 1131–1166 (2020).
Google Scholar
Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).
Google Scholar
Kelly, J. R. et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109–118 (2016).
Google Scholar
Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21, 786–796 (2016).
Google Scholar
Johnson, K. V.-A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).
Google Scholar
Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).
Google Scholar
Fülling, C., Dinan, T. G. & Cryan, J. F. Gut microbe to brain signaling: what happens in vagus. Neuron 101, 998–1002 (2019).
Google Scholar
Neuman, H., Debelius, J. W., Knight, R. & Koren, O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 39, 509–521 (2015).
Google Scholar
Pérez-Burgos, A. et al. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G211–G220 (2013).
Google Scholar
Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108, 16050–16055 (2011).
Google Scholar
Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J. & Dinan, T. G. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43, 164–174 (2008).
Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–57 (2008).
Google Scholar
Wohleb, E. S., Franklin, T., Iwata, M. & Duman, R. S. Integrating neuroimmune systems in the neurobiology of depression. Nat. Rev. Neurosci. 17, 497–511 (2016).
Google Scholar
Gareau, M. G., Jury, J., MacQueen, G., Sherman, P. M. & Perdue, M. H. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56, 1522–1528 (2007).
Google Scholar
Messaoudi, M. et al. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2, 256–261 (2011).
Google Scholar
Schmidt, K. et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232, 1793–1801 (2015).
Google Scholar
Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).
Google Scholar
Person, H. & Keefer, L. Psychological comorbidity in gastrointestinal diseases: update on the brain–gut–microbiome axis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 107, 110209 (2021).
Google Scholar
Allen, A. P. et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 6, e939 (2016).
Google Scholar
Pinto-Sanchez, M. I. et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology 153, 448–459 (2017).
Google Scholar
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A. & Colzato, L. S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 48, 258–264 (2015).
Google Scholar
Kelly, J. R. et al. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain Behav. Immun. 61, 50–59 (2016).
Google Scholar
Pirbaglou, M. et al. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr. Res. 36, 889–898 (2016).
Google Scholar
Wang, H., Lee, I.-S., Braun, C. & Enck, P. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J. Neurogastroenterol. Motil. 22, 589–605 (2016).
Google Scholar
McKean, J., Naug, H., Nikbakht, E., Amiet, B. & Colson, N. Probiotics and subclinical psychological symptoms in healthy participants: a systematic review and meta-analysis. J. Altern. Complement. Med. 23, 249–258 (2017).
Google Scholar
Wallace, C. J. K. & Milev, R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann. Gen. Psychiatry 16, 14 (2017).
Google Scholar
Liu, R. T., Walsh, R. F. L. & Sheehan, A. E. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 102, 13–23 (2019).
Google Scholar
Gross, J. J. Emotion regulation: affective, cognitive, and social consequences. Psychophysiology 39, 281–291 (2002).
Google Scholar
Johnson, K. V.-A. Gut microbiome composition and diversity are related to human personality traits. Hum. Microbiome J. 15, 100069 (2020).
Google Scholar
Tillisch, K. et al. Brain structure and response to emotional stimuli as related to gut microbial profiles in healthy women. Psychosom. Med. 79, 905–913 (2017).
Google Scholar
Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).
Google Scholar
Bagga, D. et al. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 9, 486–496 (2018).
Google Scholar
Tillisch, K. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401 (2013).
Google Scholar
Papalini, S. et al. Stress matters: randomized controlled trial on the effect of probiotics on neurocognition. Neurobiol. Stress 10, 100141 (2019).
Google Scholar
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
Google Scholar
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R. & Jacobs, G. A. Manual for the State–Trait Anxiety Inventory. (Consulting Psychologists Press, 1983).
Meyer, T. J., Miller, M. L., Metzger, R. L. & Borkovec, T. D. Development and validation of the Penn State Worry Questionnaire. Behav. Res. Ther. 28, 487–495 (1990).
Google Scholar
Cohen, S., Kamarck, T. & Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 24, 385–396 (1983).
Google Scholar
van der Does, A. J. W. & Williams, J. M. G. Leiden Index of Depression Sensitivity – Revised (LEIDS-R). Leiden University (2003). Available at: http://www.dousa.nl/publications_depression.htm#LEIDS.
Radloff, L. The CES-D scale: a self-report depression scale for research in the general population. Appl. Psychol. Meas. 1, 385–401 (1977).
Google Scholar
Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Personal. Soc. Psychol. 54, 1063–1070 (1988).
Google Scholar
Nock, M. K., Wedig, M. M., Holmberg, E. B. & Hooley, J. M. The Emotion Reactivity Scale: development, evaluation, and relation to self-injurious thoughts and behaviors. Behav. Ther. 39, 107–116 (2008).
Google Scholar
Mehling, W. E. et al. The Multidimensional Assessment of Interoceptive Awareness (MAIA). PLoS One 7, e48230 (2012).
Google Scholar
Vorst, H. C. M. & Bermond, B. Validity and reliability of the Bermond–Vorst Alexithymia Questionnaire. Pers. Individ. Diff. 30, 413–434 (2001).
Google Scholar
Buss, A. H. & Perry, M. The aggression questionnaire. J. Pers. Soc. Psychol. 63, 452–459 (1992).
Google Scholar
Leibbrand, R., Cuntz, U. & Hiller, W. Assessment of functional gastrointestinal disorders using the Gastro-Questionnaire. Int. J. Behav. Med. 9, 155–172 (2002).
Google Scholar
Harmer, C. J., Hill, S. A., Taylor, M. J., Cowen, P. J. & Goodwin, G. M. Toward a neuropsychological theory of antidepressant drug action: increase in positive emotional bias after potentiation of norepinephrine activity. Am. J. Psychiatry 160, 990–992 (2003).
Google Scholar
Harmer, C. J., Heinzen, J., O’Sullivan, U., Ayres, R. A. & Cowen, P. J. Dissociable effects of acute antidepressant drug administration on subjective and emotional processing measures in healthy volunteers. Psychopharmacology 199, 495–502 (2008).
Google Scholar
Harmer, C. J., Shelley, N. C., Cowen, P. J. & Goodwin, G. M. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am. J. Psychiatry 161, 1256–1263 (2004).
Google Scholar
Horder, J., Cowen, P. J., Di Simplicio, M., Browning, M. & Harmer, C. J. Acute administration of the cannabinoid CB1 antagonist rimonabant impairs positive affective memory in healthy volunteers. Psychopharmacology 205, 85–91 (2009).
Google Scholar
van der Schalk, J., Hawk, S. T., Fischer, A. H. & Doosje, B. Moving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES). Emotion 11, 907–920 (2011).
Google Scholar
Fox, E., Russo, R., Bowles, R. & Dutton, K. Do threatening stimuli draw or hold visual attention in subclinical anxiety? J. Exp. Psychol. Gen. 130, 681–700 (2001).
Google Scholar
Ma, L. et al. Attentional bias modification in virtual reality – a VR-based dot-probe task with 2D and 3D stimuli. Front. Psychol. 10, 2526 (2019).
Google Scholar
Harmer, C. J., Perrett, D. I., Cowen, P. J. & Goodwin, G. M. Administration of the beta-adrenoceptor blocker propranolol impairs the processing of facial expressions of sadness. Psychopharmacology 154, 383–389 (2001).
Google Scholar
Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997).
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2015).
Sarkar, A. et al. The microbiome in psychology and cognitive neuroscience. Trends Cogn. Sci. 22, 611–636 (2018).
Google Scholar
Goodwin, G. M., Price, J., de Bodinat, C. & Laredo, J. Emotional blunting with antidepressant treatments: a survey among depressed patients. J. Affect. Disord. 221, 31–35 (2017).
Google Scholar
Price, J., Cole, V. & Goodwin, G. M. Emotional side-effects of selective serotonin reuptake inhibitors: qualitative study. Br. J. Psychiatry 195, 211–217 (2009).
Google Scholar
Johnson, K. V.-A. & Steenbergen, L. Gut feelings: vagal stimulation reduces emotional biases. Neuroscience 494, 119–131 (2022).
Google Scholar
Johnson, K. V.-A. & Steenbergen, L. Do common antibiotic treatments influence emotional processing? Physiol. Behav. 255, 113900 (2022).
Google Scholar
Baião, R. et al. Multispecies probiotic administration reduces emotional salience and improves mood in subjects with moderate depression: a randomised, double-blind, placebo-controlled study. Psychol. Med. 53, 3437–3447 (2022).
Google Scholar
Benton, D., Williams, C. & Brown, A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 61, 355–361 (2007).
Google Scholar
Figueroa, C. A. et al. The measurement of cognitive reactivity to sad mood in patients remitted from major depressive disorder. Br. J. Clin. Psychol. 57, 313–327 (2018).
Google Scholar
Ortiz, A. & Grof, P. Electronic monitoring of self-reported mood: the return of the subjective? Int. J. Bipolar Disord. 4, 28 (2016).
Google Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35, 121–143 (2012).
Google Scholar
Fried, E. I., Flake, J. K. & Robinaugh, D. J. Revisiting the theoretical and methodological foundations of depression measurement. Nat. Rev. Psychol. 1, 358–368 (2022).
Google Scholar
Fried, E. I. & Nesse, R. M. Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med 13, 72 (2015).
Google Scholar
Tynan, R. J. et al. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav. Immun. 26, 469–479 (2012).
Google Scholar
McVey Neufeld, K.-A. et al. Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut–brain signalling. Sci. Rep. 9, 14290 (2019).
Google Scholar
Colombo, D. et al. The need for change: understanding emotion regulation antecedents and consequences using ecological momentary assessment. Emotion 20, 30–36 (2020).
Google Scholar
Kivelä, L., van der Does, A. J. W., Riese, H. & Antypa, N. Don’t miss the moment: a systematic review of ecological momentary assessment in suicide research. Front. Digit. Health 4, 876595 (2022).
Google Scholar
Armey, M. F., Schatten, H. T., Haradhvala, N. & Miller, I. W. Ecological momentary assessment (EMA) of depression-related phenomena. Curr. Opin. Psychol. 4, 21–25 (2015).
Google Scholar
Aguilera, A., Schueller, S. M. & Leykin, Y. Daily mood ratings via text message as a proxy for clinic based depression assessment. J. Affect. Disord. 175, 471–474 (2015).
Google Scholar
link