Dietary changes are associated with an increase in air pollution-related health and environmental inequity in China

0
Dietary changes are associated with an increase in air pollution-related health and environmental inequity in China
  • Burnett, R. et al. Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

    Article 
    CAS 

    Google Scholar 

  • Bu, X. et al. Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ. Res. 197, 111123 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yin, H. et al. Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost. Lancet Planet. Health 5, e356–e367 (2021).

    Article 

    Google Scholar 

  • Yang, H., Huang, X., Westervelt, D. M., Horowitz, L. & Peng, W. Socio-demographic factors shaping the future global health burden from air pollution. Nat. Sustain. 6, 58–68 (2022).

    Article 

    Google Scholar 

  • Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article 

    Google Scholar 

  • Azimi, M., Feng, F. & Zhou, C. Air pollution inequality and health inequality in China: An empirical study. Environ. Sci. Pollut. Res. 26, 11962–11974 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yang, T. & Liu, W. Does air pollution affect public health and health inequality? Empirical evidence from China. J. Clean. Prod. 203, 43–52 (2018).

    Article 

    Google Scholar 

  • Liu, X. et al. Dietary shifts can reduce premature deaths related to particulate matter pollution in China. Nat. Food 2, 997–1004 (2021).

    Article 
    CAS 

    Google Scholar 

  • Braveman, P. Health disparities and health equity: Concepts and measurement. Annu. Rev. Public Health 27, 167–194 (2006).

    Article 

    Google Scholar 

  • Bartley, M. Health inequality: an introduction to concepts, theories and methods. J. Epidemiol. Community Health 59, 711 (2005).

    Google Scholar 

  • Jiang, X., Fu, W. & Li, G. Can the improvement of living environment stimulate urban Innovation?—Analysis of high-quality innovative talents and foreign direct investment spillover effect mechanism. J. Clean. Prod. 255, 120212 (2020).

    Article 

    Google Scholar 

  • Zhang, Z., Shao, C., Guan, Y. & Xue, C. Socioeconomic factors and regional differences of PM2.5 health risks in China. J. Environ. Manag. 251, 109564 (2019).

  • Shen, H. et al. Urbanization-induced population migration has reduced ambient PM2.5 concentrations in China. Sci. Adv. 3, 1–13 (2017).

  • Dong, E. et al. Differences in regional distribution and inequality in health-resource allocation at hospital and primary health centre levels: a longitudinal study in Shanghai, China. BMJ Open 10, e035635 (2020).

  • Zhang, T., Xu, Y., Ren, J., Sun, L. & Liu, C. Inequality in the distribution of health resources and health services in China: hospitals versus primary care institutions. Int. J. Equity Health 16, 42 (2017).

  • Braubach, M. et al. Effects of Urban Green Space on Environmental Health, Equity and Resilience. 187–205 (2017).

  • Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. USA 116, 24463–24469 (2019).

    Article 
    CAS 

    Google Scholar 

  • Geng, G. et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 14, 645–650 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zheng, Y. et al. Air quality improvements and health benefits from China’s clean air action since 2013. Environ. Res. Lett. 12, 114020 (2017).

    Article 

    Google Scholar 

  • Wu, Y. et al. PM2.5 pollution is substantially affected by ammonia emissions in China. Environ. Pollut. 218, 86–94 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zheng, H. et al. Transition in source contributions of PM2.5 exposure and associated premature mortality in China during 2005–2015. Environ. Int. 132, 105111 (2019).

    Article 
    CAS 

    Google Scholar 

  • Springmann, M. et al. The global and regional air quality impacts of dietary change. Nat. Commun. 14, 6227 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sun, Z. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat. Food 3, 29–37 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhao, H. et al. Imbalanced transfer of trade-related air pollution mortality in China. Environ. Res. Lett. 15, 094009 (2020).

    Article 
    CAS 

    Google Scholar 

  • Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

    Article 
    CAS 

    Google Scholar 

  • Dalin, C. & Rodríguez-Iturbe, I. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 11, 035012 (2016).

    Article 

    Google Scholar 

  • Zheng, L. et al. Health burden from food systems is highly unequal across income groups. Nat. Food 5, 251–261 (2024).

    Article 

    Google Scholar 

  • Jiao, K., Xu, M. & Liu, M. Health status and air pollution related socioeconomic concerns in urban China. Int. J. Equity Health 17, 18 (2018).

    Article 

    Google Scholar 

  • Zhao, H. et al. Inequality of household consumption and air pollution-related deaths in China. Nat. Commun. 10, 4337 (2019).

    Article 

    Google Scholar 

  • Kong, L. et al. Improved inversion of monthly ammonia emissions in china based on the Chinese Ammonia Monitoring Network and Ensemble Kalman Filter. Environ. Sci. Technol. 53, 12529–12538 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L., Zhang, X., Gao, Q. & Yan, L. Nitrogen application effect on maize yield, NH3, and N2O emissions in Northeast China by meta-analysis. Agronomy 13, 1479 (2023).

    Article 

    Google Scholar 

  • Wang, C. et al. An empirical model to estimate ammonia emission from cropland fertilization in China. Environ. Pollut. 288, 117982 (2021).

    Article 
    CAS 

    Google Scholar 

  • NBSC. National Bureau of Statistics of China. (2023).

  • Li, Y., Li, X., Tan, M., Wang, X. & Xin, L. The impact of cultivated land spatial shift on food crop production in China, 1990–2010. L. Degrad. Dev 29, 1652–1659 (2018).

    Article 

    Google Scholar 

  • Wang, C. et al. Ammonia emissions from croplands decrease with farm size in China. Environ. Sci. Technol. 56, 9915–9923 (2022).

    Article 
    CAS 

    Google Scholar 

  • The division of grain production sub-regions need to be improved. https://www.moa.gov.cn/ztzl/ymksn/jjrbbd/202308/t20230803_6433429.htm.

  • Chen, Y. & Li, X. Spatial-temporal characteristics and influencing factors of grain yield change in China. Agric. Eng. 29, 1–10 (2013).

    Google Scholar 

  • Wang, J., Zhang, Z. & Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 74, 204–213 (2018).

    Article 

    Google Scholar 

  • Rentschler, J. & Leonova, N. Global air pollution exposure and poverty. Nat. Commun. 14, 4432 (2023).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. & Dong, F. How industrial transfer processes impact on haze pollution in China: An analysis from the perspective of spatial effects. Int. J. Environ. Res. Public Health 16, 423 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cui, S. et al. A hybrid method for quantifying China’s nitrogen footprint during urbanisation from 1990 to 2009. Environ. Int. 97, 137–145 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bei di, D., Lei, D. & Jinhua, C. Differences of PM2. 5 health risks and influencing factors in different types of cities. China Popul. Environ. 31, 90–100 (2021).

    Google Scholar 

  • Xia, F., Xing, J., Xu, J. & Pan, X. The short-term impact of air pollution on medical expenditures: evidence from Beijing. J. Environ. Econ. Manag. 114, 102680 (2022).

    Article 

    Google Scholar 

  • Kaika, D. & Zervas, E. The Environmental Kuznets Curve (EKC) theory—Part A: concept, causes and the CO2 emissions case. Energy Policy 62, 1392–1402 (2013).

    Article 

    Google Scholar 

  • Lu, D., Xu, J., Yang, D. & Zhao, J. Spatio-temporal variation and influence factors of PM2.5 concentrations in China from 1998 to 2014. Atmos. Pollut. Res. 8, 1151–1159 (2017).

    Article 

    Google Scholar 

  • Wang, S., Zhou, C., Wang, Z., Feng, K. & Hubacek, K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J. Clean. Prod. 142, 1800–1809 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wang, H. et al. Trade-driven relocation of air pollution and health impacts in China. Nat. Commun. 8, 738 (2017).

    Article 

    Google Scholar 

  • Wu, S. et al. Virtual land, water, and carbon flow in the inter-province trade of staple crops in China. Resour. Conserv. Recycl. 136, 179–186 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lee, A., Patay, D., Herron, L.-M., Parnell Harrison, E. & Lewis, M. Affordability of current, and healthy, more equitable, sustainable diets by area of socioeconomic disadvantage and remoteness in Queensland: insights into food choice. Int. J. Equity Health 20, 153 (2021).

    Article 

    Google Scholar 

  • Ambikapathi, R. et al. Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. Nat. Food 3, 764–779 (2022).

    Article 

    Google Scholar 

  • Zhu, X., Li, Y., Li, M., Pan, Y. & Shi, P. Agricultural irrigation in China. J. Soil Water Conserv. 68, 147A–154A (2013).

    Article 

    Google Scholar 

  • Eskeland, G. S. & Harrison, A. E. Moving to greener pastures? Multinationals and the pollution haven hypothesis. J. Dev. Econ. 70, 1–23 (2003).

    Article 

    Google Scholar 

  • Liao, H., Yang, L., Dai, S. & Van Assche, A. Outward FDI, industrial structure upgrading and domestic employment: empirical evidence from the Chinese economy and the belt and road initiative. J. Asian Econ. 74, 101303 (2021).

    Article 

    Google Scholar 

  • Fotheringham, A. S. & Sachdeva, M. Scale and local modeling: new perspectives on the modifiable areal unit problem and Simpson’s paradox. J. Geogr. Syst. 24, 475–499 (2022).

    Article 

    Google Scholar 

  • Mansour, S., Al Kindi, A., Al-Said, A., Al-Said, A. & Atkinson, P. Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustain. Cities Soc. 65, 102627 (2021).

    Article 

    Google Scholar 

  • Yang, J. et al. Fine particulate matter constituents and cause-specific mortality in China: A nationwide modelling study. Environ. Int. 143, 105927 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Air quality policy should quantify effects on disparities. Science 381, 272–274 (2023).

    Article 
    CAS 

    Google Scholar 

  • Bai, Z. et al. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population. Nat. Food 3, 152–160 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shi, S. et al. Evolution in disparity of PM2.5 pollution in China. Eco-Env. Health 2, 257–263 (2023).

    Article 

    Google Scholar 

  • Council. Action Plan for Continuous Improvement of Air Quality. (2023).

  • Nguyen, H. Sustainable food systems: Concept and framework. Food Agric. Organ. United Nations Rome, Italy (2018).

  • National Bureau of Statistics of China. China City Statistical Yearbook 2011. (China Statistics Press, 2011).

  • Zhang, L. et al. Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 18, 339–355 (2018).

    Article 
    CAS 

    Google Scholar 

  • Shaddick, G. et al. Data Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global Burden of Disease Assessment. Environ. Sci. Technol. 52, 9069–9078 (2018).

    Article 
    CAS 

    Google Scholar 

  • Gastwirth, J. L. The Estimation of the Lorenz Curve and Gini Index. Rev. Econ. Stat. 54, 306 (1972).

    Article 

    Google Scholar 

  • Wang, Q. et al. Examining energy inequality under the rapid residential energy transition in China through household surveys. Nat. Energy 8, 251–263 (2023).

    Article 

    Google Scholar 

  • Chen, B. et al. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat. Commun. 13, 4636 (2022).

    Article 
    CAS 

    Google Scholar 

  • Fotheringham, A. S., Yang, W. & Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 107, 1247–1265 (2017).

    Google Scholar 

  • Luo, B. The source data and ploting codes for ‘Dietary changes are associated with an increase in air pollution-related health and environmental inequity in China’ published in communications earth & environment. (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *